در این پژوهش مسئله کنترل روبات کشسان مفصل با لحاظ محدودیت اشباع عملگر مورد بررسی دقیق قرار گرفته است. بدین منظور با استفاده از دو رویکرد مختلف روشهایی برای حل آن ارائه شده است. در ادامه با استفاده از شبیه سازیهای مختلف عملکرد روشهای ارائه شده بررسی و سپس پایداری مقاوم ساختار پیشنهادی به صورت نظری اثبات شده است. در پایان صحت ادعاهای نظری با پیاده سازی عملی بر روی یک روبات کشسان مفصل دو درجه آزادی مورد تأیید قرار گرفته است.
در این پژوهش دو مجموعه نوآوری به انجام رسیده است. در مجموعه اول ابتدا یک روش کلی با عنوان «حلقه ناظر» برای برخورد با مسئله اشباع ارائه شده است. این روش بر روی سیستمهای مختلفی پیاده شده تا نشان داده شود که مستقل از مدل می باشد. سپس یک ساختار کنترل ترکیبی همراه با حلقه ناظر برای روباتهای کشسان مفصل ارائه شده تا نشان داده شود که روش ارائه شده برای کاربرد اصلی مورد نظر پروژه (یعنی روبات کشسان مفصل) عملکرد مناسبی را در حضور اشباع ایجاد می کند. در ادامه این پژوهش به اثبات نظری پایداری برای ساختار «ترکیبی + ناظر» پرداخته ایم. سپس برای اینکه قابلیت پیاده سازی روش ارائه شده نشان داده شود آن را بر روی یک روبات کشسان مفصل که در راستای همین پژوهش طراحی و ساخته شده است پیاده نموده ایم.
مجموعه نوآوری دوم ارائه رویکرد دیگری برای مقابله با اثرات اشباع در روباتهای کشسان مفصل بر پایه روشهای بهینه چند منظوره مبتنی بر نرمهای H2 است. در این روشها برای مقاوم بودن کنترلگر از بهینه سازی سود جسته و برای کم کردن دامنه کنترل و جلوگیری از اشباع عملگر، نرم سیگنال کنترلی نیز در فرایند بهینه سازی در نظر گرفته شده است. برای طراحی عددی از تبدیل مسئله به LMI و روشهای عددی متناظر با آن استفاده شده است. همچنین جهت نشان دادن کاراییِ روش در عمل، پیاده سازی آن بر روی روبات مذکور انجام پذیرفته است.
روبات کشسان مفصل
اشباع عملگر
کنترل ترکیبی
حلقه ناظر
روش کنترل H٢/H∞
منطق فازی
1- مقدمه 1
1-1- جایگاه روباتهای کشسان مفصل در مهندسی کنترل 1
1-2- مشکلات کنترل روباتهای کشسان مفصل 3
1-3- کنترل با وجود محدودیت دامنه 4
1-4- نوآوریهای این پژوهش 6
1-5- نمای کلی رساله 7
2- مروری بر پژوهشهای قبلی و بیان چالشها 9
2-1- کنترل روباتهای کشسان مفصل 9
2-1-1- پژوهش های اولیه 10
2-1-2- ادامة خط اولیه 12
2-1-3- ارتقای مدل 14
2-1-4- پیشنهادات مختلف برای کنترل 15
2-1-5- کمیت های فیدبک شده و تقلیل اندازه گیری ها 15
2-1-6- کنترل تطبیقی 17
2-1-7- کنترل مقاوم و پایداری 18
2-1-8- پیاده سازی عملی 20
2-1-9- جمعبندی و بیان چالشها 22
2-2- مسئلة اشباع عملگر و روشهای برخورد با آن 22
2-2-1- مشکلات ناشی از اشباع 23
2-2-2- روشهای عمومی برخورد با مسئلة اشباع 25
2-2-3- روشهای بهینه و مقاوم در برخورد با اشباع 26
2-2-4- روشهای تعدیلی 27
2-2-5- مسئلة اشباع در روباتها 29
3- حلقة ناظر فازی، روشی برای برخورد با مسئله اشباع عملگر 32
3-1- بیان مسئله 33
3-2- معرفی روش 35
3-3- مزایای روش پیشنهادی 37
3-4- استفاده از حلقة ناظر بر روی دو سیستم عمومی 39
3-4-1- سیستم ناپایدار دو ورودی-دو خروجی 40
3-4-2- سیستم دارای تأخیر 43
3-5- نکات عملی در طراحی 46
4- مسئلة اشباع در FJR و استفاده از روش حلقة ناظر برای برخورد با آن 48
4-1- مدلسازی روباتهای کشسان مفصل 48
4-1-1- کنترل ترکیبی و رویکرد رویة ناوردا برای کنترل FJR ها 53
4-2- استفاده از حلقة ناظر در ساختار ترکیبی برای FJR 57
4-3- بررسی عملکرد روش ارائه شده با شبیه سازی 58
4-4- اثبات پایداری برای ساختار «ترکیبی + ناظر» 62
4-4-1- پایداری زیر سیستم تند 64
4-4-2- لم های مورد نیاز برای اثبات پایداری 67
4-4-3- اثبات پایداری سیستم کامل 71
5- نگاه دوم: روشهای بهینة و H2 برای مقابله با اثرات اشباع در FJR 76
5-1- طراحی با رویکرد حساسیت مخلوط 79
5-2- طراحی 81
5-3- بررسی کارایی روشهای ارائه شده 82
6- پیاده سازی عملی 90
6-1- معرفی مجموعة آزمایشگاهی ساخته شده 91
6-1-1- سخت افزار الکترومکانیکی 91
6-1-2- نرم افزار 95
6-2- مدل پارامتریک سیستم 98
6-3- تخمین پارامترهای سیستم 100
6-4- نتایج پیاده سازی 104
6-4-1- کنترل ترکیبی 107
6-4-2- کنترل ترکیبی تحت نظارت ناظر فازی 109
7- نتایج و تحقیقات آتی 114
پیوست الف: کنترل ترکیبی و رویکرد رویة ناوردا برای FJR چند محوره 118
پیوست ب: طراحی کنترل بهینة چند منظوره مبتنی بر نرم با تبدیل به LMI 127
پیوست ج: راهنمای کار با جعبه ابزار زمان حقیقی نرم افزار MATLAB 132
پیوست د: راهنمای فنی روبات خواجه نصیر 137
پیوست هـ : نتایج بیشتری از پیاده سازیها 140
واژه نامه انگلیسی به فارسی 145
واژه نامه فارسی به انگلیسی 146
مقالات استخراج شده از این پژوهش 147
مراجع 149
شکل 1 1- بازوی ایستگاه فضایی بین المللی 3
شکل 1 2- دست 4 انگشتی DLR و میکرو هارمونیک درایو به کار رفته در آن 3
شکل 2 1- ساختار ارائه شده در مقالة [108] برای مقابله با اشباع 28
شکل 3 1- سیستم حلقه بسته 34
شکل 3 2- ساختار حلقه بسته با حضور حلقة ناظر 34
شکل 3 3- تعریف متغیرهای زبانی برای دامنة سیگنال کنترل 36
شکل 3 4- تعریف متغیرهای زبانی برای مشتق سیگنال کنترل 36
شکل 3 5- تعریف متغیرهای زبانی برای بهرة ضرب شده در خطا 36
شکل 3 6- نگاشت غیر خطی معادل با منطق مورد استفاده 38
شکل 3 7- خروجیها در حالت Sat 41
شکل 3 8- خروجی اول در دو شبیه سازی Fuz و NoSat 42
شکل 3 9- خروجی دوم در دو شبیه سازی Fuz و NoSat 42
شکل 3 10- مقدار بهره در شبیه سازی Fuz 42
شکل 3 11- خروجی سه حالت NoSat، Sat و Fuz برای ورودی مرجع با دامنة 5/0 44
شکل 3 12- خروجی سه حالت NoSat، Sat و Fuz برای ورودی مرجع با دامنة 7/0 44
شکل 3 13- خروجی سه حالت NoSat، Sat و Fuz برای ورودی مرجع با دامنة 9/0 44
شکل 3 14- مقدار بهرة اعمال شده توسط ناظر برای ورودی مرجع با دامنة 9/0 45
شکل 3 15- اثر حلقة ناظر بر دامنة کنترل برای ورودی مرجع با دامنة 9/0 45
شکل 4 1- روبات کشسان مفصل یک درجه آزادی 53
شکل 4 2- ساختار کنترل ترکیبی برای FJR 57
شکل 4 3- نحوة استفاده از حلقة ناظر برای FJR 58
شکل 4 4- ردیابی در حالت NoSat، بدون محدودیت عملگر و بدون ناظر 60
شکل 4 5- ناپایداری ناشی از اشباع با کران = 830 در حالت Sat 60
شکل 4 6- ردیابی در حالت Fuz با کران اشباع به اندازة = 830 61
شکل 4 7- مقدار در حالت Fuz با کران اشباع به اندازة = 830 61
شکل 5 1- نمودار حلقه بستة سیستم با عدم قطعیت ضربی در ورودی 78
شکل 5 2- چگونگی وزن دهی سیگنالها برای مسئلة حساسیت مخلوط 79
شکل 5 3- مدلهای شناسایی شده (P1 تا P20) و مدل نامی P0 83
شکل 5 4- چگونگی اختیار کران بالای عدم قطعیت 84
شکل 5 5- نمودارهای بود دو کنترلگر 86
شکل 5 6- ردیابی برای ورودی مرجع سینوسی با = 12 87
شکل 5 7- سیگنال کنترل برای ورودی مرجع سینوسی با = 12 88
شکل 5 8- ناپایداری رویکردهای مختلف برای محدودیت دامنة = 9 88
شکل 6 1- تصویر روبات مورد استفاده 90
شکل 6 2- چگونگی عملکرد هارمونیک درایو 91
شکل 6 3- نمودار بلوکی روبات مورد استفاده 92
شکل 6 4- تصویر مفصل کشسانِ ساخته شده 94
شکل 6 5- مدل بلوکی بازوها 95
شکل 6 6- مدل مورد استفاده برای اعمال ولتاژ به موتور دوم 96
شکل 6 7- مدل مورد استفاده برای خواندن کدگذار سوم 97
شکل 6 8- بازوی یک درجه با جعبه دنده 98
شکل 6 9- دیاگرام بلوکی دینامیک بازوی یک محوره 99
شکل 6 10- زاویة اندازه گیری شدة بازوی دوم و مقدار شبیه سازی شدة آن 103
شکل 6 11- زاویة اندازه گیری شدة موتور دوم و مقدار شبیه سازی شدة آن 103
شکل 6 12- کنترل حلقه بستة PD برای بازوی دوم با اندازه گیری مکان عملگر 104
شکل 6 13- رفتار بازو با کنترل PD صلب برای ورودی سینوسی 105
شکل 6 14- کنترل حلقه بستة PD برای بازوی دوم با اندازه گیری مکان بازو 106
شکل 6 15- رفتار بازوی دوم با کنترل PD صلب با اندازه گیری مکان بازو 106
شکل 6 16- رفتار بازو با سوییچ کردن کنترل ترکیبی و کنترل صلب 107
شکل 6 17- رفتار بازو با کنترل ترکیبی با بهره بالا 108
شکل 6 18- دامنة کنترل در روش کنترل ترکیبی 109
شکل 6 19- چگونگی پیاده سازی منطق نظارت 109
شکل 6 20- اثر حلقة ناظر بر ردیابی سیگنال 20Sin(2t) برای نقطه کار 180 درجه 111
شکل 6 21- اثر حلقة ناظر بر ردیابی سیگنال مربعی با دامنة 20 برای نقطه کار 0 درجه 112
شکل ب 1- دیاگرام بلوکی مسألة مخلوط 127
شکل ج 1- چگونگی نصب کارت جدید 134
شکل ج 2- تنظیمات مربوط به بلوکهای ورودی یا خروجی 134
شکل ج 3- تنظیم پارامترهای شبیه سازی 135
شکل ج 4- تنظیم پارامترهای زمان حقیقی 135
شکل ج 5- تولید کد C ، ارتباط با پورت ، اجرای برنامه 136
شکل د 1- نمایی از رابط کاربر برنامة FjrInit.exe 139
شکل ه 1- اثر حلقة ناظر بر ردیابی سیگنال 40Sin(2t) برای نقطه کار 180 درجه 140
شکل ه 2- اثر حلقة ناظر بر ردیابی سیگنال 20Sin(4t) برای نقطه کار 0 درجه 141
شکل ه 3- اثر حلقة ناظر بر ردیابی سیگنال 20Sin(2t) برای نقطه کار 90- درجه 142
شکل ه 4- اثر حلقة ناظر بر ردیابی سیگنال مربعی با دامنة 20 برای نقطه کار 0 درجه 143
شکل ه 5- اثر حلقة ناظر بر ردیابی سیگنال مربعی با دامنة 20 برای نقطه کار 0 درجه – با میرایی 144
جدول 2 1- اولین مقالات ارائه شده در مورد روباتهای کشسان مفصل 10
جدول 2 2- مقالاتی که خط اولیه را پی گرفته اند. 13
جدول 3 1- قواعد فازی 37
جدول 4 1- کران کمینة قابل قبول برای دو حالت Sat و Fuz 60
جدول 4 2- نرمهای خطا برای دو حالت Sat و Fuz به ازای مقادیر مختلف 61
جدول 5 1- مقادیر min برای ورودیهای مختلف 89
جدول 6 1-ضریب کشسانی اندازه گیری شده برای نقطة کار 90 درجه 102
جدول 6 2-ضریب کشسانی اندازه گیری شده برای نقطة کار 90- درجه 102
جدول 6 3-پارامترهای شناسایی شده 102
جدول 6 4-پارامترهای محاسبه شده 102
جدول د 1- مشخصات موتور اول 137
جدول د 2- مشخصات موتور دوم همراه با جعبه دنده 137
جدول د 3- مشخصات هارمونیک درایو 137
جدول د 4- مشخصات سیگنالهای اعمال شده از رایانه به روبات 138
جدول د 5- مشخصات سیگنالهای اندازه گیری شده توسط رایانه 138
تصادفی